Sains Malaysiana 53(5)(2024): 983-994
http://doi.org/10.17576/jsm-2024-5305-01
Unlocking Therapeutic Potential: Identifying
Small Molecule Inhibitors for SARS-COV-2 Variants' Main Protease (MPRO)
Through Molecular Docking Analysis
(Membuka Kunci Potensi Terapeutik: Mengenal
Pasti Perencatan Molekul Kecil untuk Protease Utama (MPRO) Varian
SARS-COV-2 Melalui Analisis Dok Molekul)
CHONG YIE WOON1,2& NURUL
IZZA ISMAIL1,*
1School of Biological Sciences, Universiti Sains Malaysia,
11800 USM, Penang, Malaysia
2BiologicalDepartment of Chemistry, University of California Riverside, CA, USA
Received: 3 November 2023/Accepted: 8 April 2024
ABSTRACT
Even with existing emergency drugs, the development of
safer and more effective drugs for the treatment of COVID-19 still needs to
continue. Virtual screening through a molecular docking approach is a powerful
way to discover potential compounds for new drug discovery. In this study, we
targeted SARS-CoV-2 wild-type major protease (MPro), beta, lambda
and omicron variants, to conduct a virtual screening with a selection of 100
ligands from the PubChem database using AutoDock Vina software. Among the
inhibitors that have been identified are ten compounds consisting of
ergotamine, 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide], remetinostat, benzamidine, argifin, irinotecan,
dihydroergotamine, telmisartan, bromocriptine, and cilengitide, which exhibited
the highest binding affinity. Interaction analysis through BIOVIA Discovery
Studio showed the binding and interaction modes between these inhibitors and MPro residues of the variant. This mainly refers to
2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide] and remetinostat which consistently exhibit
strong interactions with MPro variants. This research provides
promising leads for the development of potential COVID-19 therapeutics. In
summary, targeting conserved MPro with small molecule inhibitors
provides a solid foundation for combating SARS-CoV-2 and its variants, holding
promise for effective COVID-19 mitigation.
Keywords: COVID-19; molecular docking; MPro; remetinostat; 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide]
Abstrak
Walaupun dengan ubat kecemasan yang sedia ada,
pembangunan ubat yang lebih selamat dan berkesan untuk rawatan COVID-19 masih
perlu diteruskan. Penyaringan maya melalui pendekatan dok molekul merupakan
satu cara yang terbaik untuk penemuan sebatian yang berpotensi bagi penemuan ubat baharu. Dalam kajian ini,
kami menyasarkan protease utama (MPro) jenis liar SARS-CoV-2, beta,
lambda dan varian omikron, untuk dijalankan saringan maya dengan pemilihan 100
ligan daripada pangkalan data PubChem menggunakan perisian AutoDock Vina.
Antara perencat yang telah dikenal pasti adalah sepuluh sebatian terdiri
daripada ergotamin, 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide], remetinostat, benzamidine, argifin,
irinotecan, dihydroergotamine, telmisartan, bromocriptine dan cilengitide yang
menunjukkan pertalian pengikatan tertinggi. Analisis interaksi melalui BIOVIA
Discovery Studio mendedahkan mod pengikatan dan interaksi antara perencat ini
serta sisa MPro bagi varian tersebut. Ini terutamanya merujuk kepada
2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide] dan remetinostat yang secara tekalnya
menunjukkan interaksi yang kuat dengan varian MPro. Penyelidikan ini
memberikan petunjuk yang berpotensi untuk pembangunan terapeutik COVID-19.
Ringkasnya, menyasarkan MPro yang dipelihara dengan perencat molekul
kecil menyediakan asas yang kukuh untuk memerangi SARS-CoV-2 dan variannya,
memegang janji untuk mitigasi COVID-19 yang berkesan.
Kata kunci: COVID-19; dok molekul; MPro; remetinostat; 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid
bis-[(2-hydroxy-indan-1-YL)-amide]
REFERENCES
Adedeji, A.O. & Sarafianos, S.G. 2014. Antiviral drugs
specific for coronaviruses in preclinical development. Current Opinion
in Virology 8: 45-53.
Anand, K.,
Ziebuhr, J., Wadhwani, P., Mesters, J.R. & Hilgenfeld, R. 2003. Coronavirus
main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 300(5626):
1763-1767.
Bosshard, H.R., Marti, D.N.
& Jelesarov, I. 2004. Protein stabilization by salt bridges: Concepts,
experimental approaches and clarification of some misunderstandings. Journal
of Molecular Recognition 17(1): 1-16.
Brylinski,
M. 2018. Aromatic interactions at the ligand–protein interface: Implications
for the development of docking scoring functions. Chemical Biology
& Drug Design 91(2): 380-390.
Bzówka,
M., Mitusińska, K., Raczyńska, A., Samol, A., Tuszyński, J.A.
& Góra, A. 2020. Structural and evolutionary analysis indicate that the
SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor
design. International Journal of Molecular Sciences 21(9):
3099.
Chia,
C.B., Xu, W. & Shuyi Ng, P. 2022. A patent review on SARS coronavirus main
protease (3CLpro) inhibitors. ChemMedChem 17(1): e202100576.
Duarte,
M., Pelorosso, F., Nicolosi, L.N., Salgado, M.V., Vetulli, H., Aquieri, A.,
Azzato, F., Castro, M., Coyle, J., Davolos, I., Fernandez Criado, I., Gregori,
R., Mastrodonato, P., Rubio, M.C., Sarquis, S., Wahlmann, F. & Rothlin,
R.P. 2021. Telmisartan for treatment of COVID-19 patients: An open multicenter
randomized clinical trial. EClinicalMedicine 37: 100962.
Flynn, J.M., Zvornicanin,
S.N., Tsepal, T., Shaqra, A.M., Kurt Yilmaz, N., Jia, W., Moquin, S., Dovala,
D., Schiffer, C.A. & Bolon, D.N.A. 2023. Contributions of hyperactive
mutations in Mpro from SARS-CoV-2 to drug resistance. ACS Infectious
Diseases 10(4): 1174-1184.
Gentile, F., Yaacoub, J.C., Gleave, J., Fernandez, M., Ton,
A.T., Ban, F., Stern, A. & Cherkasov, A. 2022. Artificial
intelligence–enabled virtual screening of ultra-large chemical libraries with
deep docking. Nature Protocols 17(3): 672-697.
Govardhanagiri, S., Bethi, S. & Nagaraju, G.P. 2019.
Small molecules and pancreatic cancer trials and troubles. In Breaking
Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy, edited by
Nagaraju, G.P. London: Academic Press. pp. 117-131.
Goyal, B.
& Goyal, D. 2020. Targeting the dimerization of the main protease of
coronaviruses: A potential broad-spectrum therapeutic strategy. ACS
Combinatorial Science 22(6): 297-305.
Greasley,
S.E., Noell, S., Plotnikova, O., Ferre, R., Liu, W., Bolanos, B., Fennell, K.,
Nicki, J., Craig, T., Zhu, Y., Stewart, A.E. & Steppan, C.M. 2022.
Structural basis for the in vitro efficacy of nirmatrelvir against
SARS-CoV-2 variants. Journal of Biological Chemistry 298(6):
101972.
Gul, S., Ozcan, O., Asar, S., Okyar, A., Barıs, I. &
Kavakli, I.H. 2021. In silico identification of widely used and
well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral
RNA-dependent RNA polymerase inhibitors for direct use in clinical
trials. Journal of Biomolecular Structure and Dynamics 39(17):
6772-6791.
Gurung,
A.B., Ali, M.A., Lee, J., Farah, M.A. & Al-Anazi, K.M. 2020. In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as
potential coronavirus main protease enzyme inhibitors. Saudi Journal of
Biological Sciences 27(10): 2674-2682.
Hakmi, M.,
Bouricha, E.M., Kandoussi, I., El Harti, J. & Ibrahimi, A. 2020.
Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main
protease using molecular docking analysis. Bioinformation 16(4):
301-306.
Higueruelo,
A.P., Schreyer, A., Bickerton, G.R.J., Pitt, W.R., Groom, C.R. & Blundell,
T.L. 2009. Atomic interactions and profile of small molecules disrupting
protein–protein interfaces: The TIMBAL database. Chemical Biology &
Drug Design 74(5): 457-467.
Horowitz,
S. & Trievel, R.C. 2012. Carbon-oxygen hydrogen bonding in biological
structure and function. Journal of Biological Chemistry 287(50):
41576-41582.
Hosseini,
M., Chen, W., Xiao, D. & Wang, C. 2021. Computational molecular docking and
virtual screening revealed promising SARS-CoV-2 drugs. Precision
Clinical Medicine 4(1): 1-16.
Huang, H.,
Zhang, G., Zhou, Y., Lin, C., Chen, S., Lin, Y., Mai, S. & Huang, Z. 2018.
Reverse screening methods to search for the protein targets of chemopreventive
compounds. Frontiers in Chemistry 6: 138.
Hung,
Y.P., Lee, J.C., Chiu, C.W., Lee, C.C., Tsai, P.J., Hsu, I.L. & Ko, W.C.
2022. Oral Nirmatrelvir/Ritonavir therapy for COVID-19: The dawn in the dark? Antibiotics 11(2): 220.
Hwang, J.,
Dial, B. E., Li, P., Kozik, M. E., Smith, M. D., & Shimizu, K. D. (2015).
How important are dispersion interactions to the strength of aromatic stacking
interactions in solution? Chemical Science, 6(7),
4358-4364.
Khalifa,
H.O. & Al Ramahi, Y.M. 2024. After the hurricane: Anti-COVID-19 drugs
development, molecular mechanisms of action and future perspectives. International
Journal of Molecular Sciences 25(2): 739.
Khan,
S.L., Siddiqui, F.A., Jain, S.P. & Sonwane, G.M. 2021. Discovery of
potential inhibitors of SARS-CoV-2 (COVID-19) main protease (Mpro) from Nigella
sativa (black seed) by molecular docking study. Coronaviruses 2(3):
384-402.
Kneller,
D.W., Phillips, G., O’Neill, H.M., Jedrzejczak, R., Stols, L., Langan, P.,
Joachimiak, A., Coates, L. & Kovalevsky, A. 2020. Structural plasticity of
SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray
crystallography. Nature Communications 11(1): 3202.
Lam, C. & Patel, P.
2023. Nirmatrelvir-Ritonavir. In StatPearls [Internet]. StatPearls
Publishing.
Lee, J.,
Worrall, L.J., Vuckovic, M., Rosell, F.I., Gentile, F., Ton, A.T., Cavaney,
N.A., Ban, F., Cherkasov, A., Paetzel, M. & Strynadka, N.C.J. 2020.
Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme
intermediate with physiological C-terminal autoprocessing site. Nature
Communications 11: 5877.
Li, Z.,
Li, X., Huang, Y.Y., Wu, Y., Liu, R., Zhou, L., Lin, Y., Wu, D., Zhang, L.,
Liu, H., Xu, X., Yu, K., Zhang, Y., Cui, J., Zhan, C.G., Wang, X. & Luo,
H.B. 2020. Identify potent SARS-CoV-2 main protease inhibitors via accelerated
free energy perturbation-based virtual screening of existing drugs. Proceedings
of the National Academy of Sciences 117(44): 27381-27387.
Lovetrue,
B. 2020. The AI-discovered aetiology of COVID-19 and rationale of the
irinotecan+ etoposide combination therapy for critically ill COVID-19
patients. Medical Hypotheses 144: 110180.
Morse,
J.S., Lalonde, T., Xu, S. & Liu, W.R. 2020. Learning from the past:
possible urgent prevention and treatment options for severe acute respiratory
infections caused by 2019‐nCoV. Chembiochem. 21(5):
730-738.
Muppalaneni,
N.B. & Rao, A.A. 2011. PDBToSDF: Create ligand structure files from PDB
file. Bioinformation 6(10): 383.
Nader, D.,
Fletcher, N., Curley, G.F. & Kerrigan, S.W. 2021. SARS-CoV-2 uses major
endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS ONE 16(6): e0253347.
Nutho, B., Mahalapbutr, P.,
Hengphasatporn, K., Pattaranggoon, N.C., Simanon, N., Shigeta, Y., Hannongbua,
S. & Rungrotmongkol, T. 2020. Why are lopinavir and ritonavir effective
against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory
mechanisms. Biochemistry 59(18): 1769-1779.
Odhar,
H.A., Ahjel, S.W., Albeer, A.A.M.A., Hashim, A.F., Rayshan, A.M. & Humadi,
S.S. 2020. Molecular docking and dynamics simulation of FDA approved drugs with
the main protease from 2019 novel coronavirus. Bioinformation 16(3):
236-244.
Ordog, R.,
Szabadka, Z. & Grolmusz, V. 2009. DECOMP: A PDB decomposition tool on the
web. Bioinformation 3(10): 413-414.
Pang, X., Xu, W., Liu, Y., Li, H. & Chen, L. 2023. The research
progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. European
Journal of Medicinal Chemistry 257: 115491.
Rothlin,
R.P., Duarte, M., Pelorosso, F.G., Nicolosi, L., Salgado, M.V., Vetulli, H.M.
& Spitzer, E. 2021. Angiotensin receptor blockers for COVID-19:
Pathophysiological and pharmacological considerations about ongoing and future
prospective clinical trials. Frontiers in Pharmacology 12:
603736.
Saluja, H., Mehanna, A., Panicucci, R. & Atef, E. 2016.
Hydrogen bonding: Between strengthening the crystal packing and improving
solubility of three haloperidol derivatives. Molecules 21(6):
719.
Santos-Filho,
O.A., Eynde, J.J.V., Mayence, A. & Huang, T.L. 2020. Evaluation of aryl
amidines/benzimidazoles as potential anti-COVID-19 agents: A computational
study. https://doi.org/10.3390/ECMC2020-07288
Shah, B.,
Modi, P. & Sagar, S.R. 2020. In silico studies on therapeutic agents
for COVID-19: Drug repurposing approach. Life Sciences 252:
117652.
Steiner,
T. 2002. The hydrogen bond in the solid state. Angewandte Chemie
International Edition 41(1): 48-76.
Steiner,
T. & Desiraju, G.R. 1998. Distinction between the weak hydrogen bond and
the van der Waals interaction. Chemical Communications 8: 891-892.
ul Qamar,
M.T., Alqahtani, S.M., Alamri, M.A. & Chen, L.L. 2020. Structural basis of
SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal
of Pharmaceutical Analysis 10(4): 313-319.
Vatansever, E.C., Yang,
K.S., Drelich, A.K., Kratch, K.C., Cho, C.C., Kempaiah, K.R., Hsu, J.C.,
Mellott, D.M., Xu, S., Tseng, C-T.K. & Liu, W.R. 2021. Bepridil is potent
against SARS-CoV-2 in vitro. Proceedings of the National Academy of
Sciences 118(10): e2012201118.
Wade, R.C.
& Goodford, P.J. 1989. The role of hydrogen-bonds in drug binding. Progress
in Clinical and Biological Research 289: 433-444.
Xiang, R.,
Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang, R., Hao, Q., Ying, T., Gao,
Y., Yu, F. & Jiang, S. 2022. Recent advances in developing small-molecule
inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B 12(4):
1591-1623.
Xie, N.Z.,
Du, Q.S., Li, J.X. & Huang, R.B. 2015. Exploring strong interactions in
proteins with quantum chemistry and examples of their applications in drug
design. PLoS ONE 10(9): e0137113.
Xiong, R.,
Zhang, L., Li, S., Sun, Y., Ding, M., Wang, Y., Zhao, Y., Wu, Y., Shang, W.,
Jiang, X., Shan, J., Shen, Z., Tong, Y., Xu, L., Chen, Y., Liu, Y., Zou, G.,
Lavillete, D., Zhao, Z., Wang, R., Zhu, L., Xiao, G., Lan, K., Li, H. & Xu,
K. 2020. Novel and potent inhibitors targeting DHODH are broad-spectrum
antivirals against RNA viruses including newly-emerged coronavirus
SARS-CoV-2. Protein & Cell 11(10): 723-739.
Yuce, M.,
Cicek, E., Inan, T., Dag, A.B., Kurkcuoglu, O. & Sungur, F.A. 2021.
Repurposing of FDA‐approved drugs against active site and potential
allosteric drug‐binding sites of COVID‐19 main protease. Proteins:
Structure, Function, and Bioinformatics 89(11): 1425-1441.
Yunta,
M.J. 2017. It is important to compute intramolecular hydrogen bonding in drug
design. Am. J. Model. Optim. 5(1): 24-57.
Zhang, L.,
Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K.
& Hilgenfeld, R. 2020. Crystal structure of SARS-CoV-2 main protease
provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):
409-412.
Zheng, J.,
Zhang, Y., Zhao, H., Liu, Y., Baird, D., Karim, M.A., Ghoussaini, M.,
Schwartzentruber, J., Dunham, I., Elsworth, B., Roberts, K., Compton, H.,
Miller-Molloy, F., Liu, X., Wang, L., Zhang, H., Smith, G.D. & Gaunt, T.R.
2020. Multi-ancestry Mendelian randomization of omics traits revealing drug
targets of COVID-19 severity. eBioMedicine 81: 104112. https://doi.org/10.1016/j.ebiom.2022.104112
*Corresponding author; email: nurul.ismail@usm.my
|